283 lines
7.8 KiB
Python
283 lines
7.8 KiB
Python
|
"""
|
||
|
Linear Regression with Tensorflow following this tutorial: https://www.tensorflow.org/tutorials/keras/regression
|
||
|
"""
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import seaborn as sns
|
||
|
import tensorflow as tf
|
||
|
from tensorflow import keras
|
||
|
from tensorflow.keras import layers
|
||
|
|
||
|
# Makes numpy stuff easier readable
|
||
|
np.set_printoptions(precision=3, suppress=True)
|
||
|
|
||
|
|
||
|
def load_data():
|
||
|
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data'
|
||
|
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
|
||
|
'Acceleration', 'Model Year', 'Origin']
|
||
|
|
||
|
raw_dataset = pd.read_csv(url, names=column_names,
|
||
|
na_values='?', comment='\t',
|
||
|
sep=' ', skipinitialspace=True)
|
||
|
|
||
|
return raw_dataset
|
||
|
|
||
|
|
||
|
def plot_loss(history):
|
||
|
plt.plot(history.history['loss'], label='loss')
|
||
|
plt.plot(history.history['val_loss'], label='val_loss')
|
||
|
plt.ylim([0, 10])
|
||
|
plt.xlabel('Epoch')
|
||
|
plt.ylabel('Error [MPG]')
|
||
|
plt.legend()
|
||
|
plt.grid(True)
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
def plot_horsepower(x, y, train_features, train_labels):
|
||
|
plt.scatter(train_features['Horsepower'], train_labels, label='Data')
|
||
|
plt.plot(x, y, color='k', label='Predictions')
|
||
|
plt.xlabel('Horsepower')
|
||
|
plt.ylabel('MPG')
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
|
||
|
def regression_single_input():
|
||
|
raw_dataset = load_data()
|
||
|
dataset = raw_dataset.copy()
|
||
|
|
||
|
#################################
|
||
|
### Prepare the training data ###
|
||
|
#################################
|
||
|
|
||
|
# Print the end of the dataset
|
||
|
print(dataset.tail())
|
||
|
|
||
|
# Check for any undefined values
|
||
|
print(dataset.isna().sum())
|
||
|
|
||
|
# Drops unknown values
|
||
|
dataset = dataset.dropna()
|
||
|
|
||
|
# Replaces the alphanumerical values with numerical ones. Can be done via keras model, but is overkill for 3 values.
|
||
|
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
|
||
|
dataset = pd.get_dummies(dataset, columns=['Origin'], prefix='', prefix_sep='')
|
||
|
|
||
|
# Split into training and test data
|
||
|
train_dataset = dataset.sample(frac=0.8, random_state=0)
|
||
|
test_dataset = dataset.drop(train_dataset.index)
|
||
|
|
||
|
# Print pair plots of the data to see if there are any probable correlations
|
||
|
sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde')
|
||
|
plt.show()
|
||
|
|
||
|
# Print statistics about the features
|
||
|
print(train_dataset.describe().transpose())
|
||
|
|
||
|
# Separate the label from the features
|
||
|
train_features = train_dataset.copy()
|
||
|
test_features = test_dataset.copy()
|
||
|
|
||
|
train_labels = train_features.pop('MPG')
|
||
|
test_labels = test_features.pop('MPG')
|
||
|
|
||
|
###########################
|
||
|
### Normalize the model ###
|
||
|
###########################
|
||
|
|
||
|
# Create the normalization layer
|
||
|
normalizer = tf.keras.layers.Normalization(axis=-1)
|
||
|
|
||
|
# Fit the preprocessing layer to the data
|
||
|
normalizer.adapt(np.array(train_features))
|
||
|
|
||
|
# See what effect the normalization has
|
||
|
first = np.array(train_features[:1])
|
||
|
|
||
|
with np.printoptions(precision=2, suppress=True):
|
||
|
print('First example:', first)
|
||
|
print()
|
||
|
print('Normalized:', normalizer(first).numpy())
|
||
|
|
||
|
#######################################
|
||
|
### Start with the regression stuff ###
|
||
|
#######################################
|
||
|
|
||
|
# Create Horsepower NP array and normalize it
|
||
|
horsepower = np.array(train_features['Horsepower'])
|
||
|
|
||
|
horsepower_normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||
|
horsepower_normalizer.adapt(horsepower)
|
||
|
|
||
|
# Build the Keras Sequential Model
|
||
|
# Apply a linear transformation to produce 1 output using a linear layer (layers.Dense)
|
||
|
horsepower_model = tf.keras.Sequential([
|
||
|
horsepower_normalizer,
|
||
|
layers.Dense(units=1)
|
||
|
])
|
||
|
|
||
|
print(horsepower_model.summary())
|
||
|
|
||
|
# Run the model without training
|
||
|
print(horsepower_model.predict(horsepower[:10]))
|
||
|
|
||
|
# Configure the training process
|
||
|
horsepower_model.compile(
|
||
|
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||
|
loss='mean_absolute_error'
|
||
|
)
|
||
|
|
||
|
# Train for 100 epochs
|
||
|
history = horsepower_model.fit(
|
||
|
train_features['Horsepower'],
|
||
|
train_labels,
|
||
|
epochs=100,
|
||
|
# Suppress logging.
|
||
|
verbose=0,
|
||
|
# Calculate validation results on 20% of the training data.
|
||
|
validation_split=0.2
|
||
|
)
|
||
|
|
||
|
# Show training progress
|
||
|
hist = pd.DataFrame(history.history)
|
||
|
hist['epoch'] = history.epoch
|
||
|
print(hist.tail())
|
||
|
|
||
|
# Show loss plot
|
||
|
plot_loss(history)
|
||
|
|
||
|
# Collect results on test set
|
||
|
test_results = {}
|
||
|
|
||
|
test_results['horsepower_model'] = horsepower_model.evaluate(
|
||
|
test_features['Horsepower'],
|
||
|
test_labels, verbose=0
|
||
|
)
|
||
|
|
||
|
# Plot the regression line
|
||
|
x = tf.linspace(0.0, 250, 251)
|
||
|
y = horsepower_model.predict(x)
|
||
|
plot_horsepower(x, y, train_features, train_labels)
|
||
|
|
||
|
def regression_multiple_inputs():
|
||
|
raw_dataset = load_data()
|
||
|
dataset = raw_dataset.copy()
|
||
|
|
||
|
#################################
|
||
|
### Prepare the training data ###
|
||
|
#################################
|
||
|
|
||
|
# Print the end of the dataset
|
||
|
print(dataset.tail())
|
||
|
|
||
|
# Check for any undefined values
|
||
|
print(dataset.isna().sum())
|
||
|
|
||
|
# Drops unknown values
|
||
|
dataset = dataset.dropna()
|
||
|
|
||
|
# Replaces the alphanumerical values with numerical ones. Can be done via keras model, but is overkill for 3 values.
|
||
|
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
|
||
|
dataset = pd.get_dummies(dataset, columns=['Origin'], prefix='', prefix_sep='')
|
||
|
|
||
|
# Split into training and test data
|
||
|
train_dataset = dataset.sample(frac=0.8, random_state=0)
|
||
|
test_dataset = dataset.drop(train_dataset.index)
|
||
|
|
||
|
# Print pair plots of the data to see if there are any probable correlations
|
||
|
sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde')
|
||
|
plt.show()
|
||
|
|
||
|
# Print statistics about the features
|
||
|
print(train_dataset.describe().transpose())
|
||
|
|
||
|
# Separate the label from the features
|
||
|
train_features = train_dataset.copy()
|
||
|
test_features = test_dataset.copy()
|
||
|
|
||
|
train_labels = train_features.pop('MPG')
|
||
|
test_labels = test_features.pop('MPG')
|
||
|
|
||
|
###########################
|
||
|
### Normalize the model ###
|
||
|
###########################
|
||
|
|
||
|
# Create the normalization layer
|
||
|
normalizer = tf.keras.layers.Normalization(axis=-1)
|
||
|
|
||
|
# Fit the preprocessing layer to the data
|
||
|
normalizer.adapt(np.array(train_features))
|
||
|
|
||
|
# See what effect the normalization has
|
||
|
first = np.array(train_features[:1])
|
||
|
|
||
|
with np.printoptions(precision=2, suppress=True):
|
||
|
print('First example:', first)
|
||
|
print()
|
||
|
print('Normalized:', normalizer(first).numpy())
|
||
|
|
||
|
#######################################
|
||
|
### Start with the regression stuff ###
|
||
|
#######################################
|
||
|
|
||
|
# Create Horsepower NP array and normalize it
|
||
|
horsepower = np.array(train_features['Horsepower'])
|
||
|
|
||
|
horsepower_normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||
|
horsepower_normalizer.adapt(horsepower)
|
||
|
|
||
|
# Build the Keras Sequential Model
|
||
|
# Apply a linear transformation to produce 1 output using a linear layer (layers.Dense)
|
||
|
linear_model = tf.keras.Sequential([
|
||
|
normalizer,
|
||
|
layers.Dense(units=1)
|
||
|
])
|
||
|
|
||
|
# Run the model without training
|
||
|
print(linear_model.predict(train_features[:10]))
|
||
|
|
||
|
# Configure the training process
|
||
|
linear_model.compile(
|
||
|
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||
|
loss='mean_absolute_error'
|
||
|
)
|
||
|
|
||
|
# Train for 100 epochs
|
||
|
history = linear_model.fit(
|
||
|
train_features,
|
||
|
train_labels,
|
||
|
epochs=100,
|
||
|
# Suppress logging.
|
||
|
verbose=0,
|
||
|
# Calculate validation results on 20% of the training data.
|
||
|
validation_split=0.2
|
||
|
)
|
||
|
|
||
|
# Show training progress
|
||
|
hist = pd.DataFrame(history.history)
|
||
|
hist['epoch'] = history.epoch
|
||
|
print(hist.tail())
|
||
|
|
||
|
# Show loss plot
|
||
|
plot_loss(history)
|
||
|
|
||
|
# Collect results on test set
|
||
|
test_results = {}
|
||
|
|
||
|
test_results['linear_model'] = linear_model.evaluate(
|
||
|
test_features, test_labels, verbose=0
|
||
|
)
|
||
|
|
||
|
# Plot the regression line
|
||
|
# Apparently, this doesnt work for multi inputs because i guess 3D plotting is kinda hart
|
||
|
#x = tf.linspace(0.0, 250, 251)
|
||
|
#y = linear_model.predict(x)
|
||
|
#plot_horsepower(x, y, train_features, train_labels)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
regression_single_input()
|
||
|
regression_multiple_inputs()
|