Initial commit
This commit is contained in:
commit
71a065e52c
157
.gitignore
vendored
Normal file
157
.gitignore
vendored
Normal file
|
@ -0,0 +1,157 @@
|
|||
### IntelliJ files
|
||||
.idea/
|
||||
|
||||
### VirtualEnv template
|
||||
# Virtualenv
|
||||
# http://iamzed.com/2009/05/07/a-primer-on-virtualenv/
|
||||
.Python
|
||||
[Bb]in
|
||||
[Ii]nclude
|
||||
[Ll]ib
|
||||
[Ll]ib64
|
||||
[Ll]ocal
|
||||
[Ss]cripts
|
||||
pyvenv.cfg
|
||||
.venv
|
||||
pip-selfcheck.json
|
||||
|
||||
### Python template
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
16
main.py
Normal file
16
main.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# This is a sample Python script.
|
||||
|
||||
# Press Shift+F10 to execute it or replace it with your code.
|
||||
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
|
||||
|
||||
|
||||
def print_hi(name):
|
||||
# Use a breakpoint in the code line below to debug your script.
|
||||
print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
|
||||
|
||||
|
||||
# Press the green button in the gutter to run the script.
|
||||
if __name__ == '__main__':
|
||||
print_hi('PyCharm')
|
||||
|
||||
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|
282
regression.py
Normal file
282
regression.py
Normal file
|
@ -0,0 +1,282 @@
|
|||
"""
|
||||
Linear Regression with Tensorflow following this tutorial: https://www.tensorflow.org/tutorials/keras/regression
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import tensorflow as tf
|
||||
from tensorflow import keras
|
||||
from tensorflow.keras import layers
|
||||
|
||||
# Makes numpy stuff easier readable
|
||||
np.set_printoptions(precision=3, suppress=True)
|
||||
|
||||
|
||||
def load_data():
|
||||
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data'
|
||||
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
|
||||
'Acceleration', 'Model Year', 'Origin']
|
||||
|
||||
raw_dataset = pd.read_csv(url, names=column_names,
|
||||
na_values='?', comment='\t',
|
||||
sep=' ', skipinitialspace=True)
|
||||
|
||||
return raw_dataset
|
||||
|
||||
|
||||
def plot_loss(history):
|
||||
plt.plot(history.history['loss'], label='loss')
|
||||
plt.plot(history.history['val_loss'], label='val_loss')
|
||||
plt.ylim([0, 10])
|
||||
plt.xlabel('Epoch')
|
||||
plt.ylabel('Error [MPG]')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_horsepower(x, y, train_features, train_labels):
|
||||
plt.scatter(train_features['Horsepower'], train_labels, label='Data')
|
||||
plt.plot(x, y, color='k', label='Predictions')
|
||||
plt.xlabel('Horsepower')
|
||||
plt.ylabel('MPG')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
def regression_single_input():
|
||||
raw_dataset = load_data()
|
||||
dataset = raw_dataset.copy()
|
||||
|
||||
#################################
|
||||
### Prepare the training data ###
|
||||
#################################
|
||||
|
||||
# Print the end of the dataset
|
||||
print(dataset.tail())
|
||||
|
||||
# Check for any undefined values
|
||||
print(dataset.isna().sum())
|
||||
|
||||
# Drops unknown values
|
||||
dataset = dataset.dropna()
|
||||
|
||||
# Replaces the alphanumerical values with numerical ones. Can be done via keras model, but is overkill for 3 values.
|
||||
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
|
||||
dataset = pd.get_dummies(dataset, columns=['Origin'], prefix='', prefix_sep='')
|
||||
|
||||
# Split into training and test data
|
||||
train_dataset = dataset.sample(frac=0.8, random_state=0)
|
||||
test_dataset = dataset.drop(train_dataset.index)
|
||||
|
||||
# Print pair plots of the data to see if there are any probable correlations
|
||||
sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde')
|
||||
plt.show()
|
||||
|
||||
# Print statistics about the features
|
||||
print(train_dataset.describe().transpose())
|
||||
|
||||
# Separate the label from the features
|
||||
train_features = train_dataset.copy()
|
||||
test_features = test_dataset.copy()
|
||||
|
||||
train_labels = train_features.pop('MPG')
|
||||
test_labels = test_features.pop('MPG')
|
||||
|
||||
###########################
|
||||
### Normalize the model ###
|
||||
###########################
|
||||
|
||||
# Create the normalization layer
|
||||
normalizer = tf.keras.layers.Normalization(axis=-1)
|
||||
|
||||
# Fit the preprocessing layer to the data
|
||||
normalizer.adapt(np.array(train_features))
|
||||
|
||||
# See what effect the normalization has
|
||||
first = np.array(train_features[:1])
|
||||
|
||||
with np.printoptions(precision=2, suppress=True):
|
||||
print('First example:', first)
|
||||
print()
|
||||
print('Normalized:', normalizer(first).numpy())
|
||||
|
||||
#######################################
|
||||
### Start with the regression stuff ###
|
||||
#######################################
|
||||
|
||||
# Create Horsepower NP array and normalize it
|
||||
horsepower = np.array(train_features['Horsepower'])
|
||||
|
||||
horsepower_normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||||
horsepower_normalizer.adapt(horsepower)
|
||||
|
||||
# Build the Keras Sequential Model
|
||||
# Apply a linear transformation to produce 1 output using a linear layer (layers.Dense)
|
||||
horsepower_model = tf.keras.Sequential([
|
||||
horsepower_normalizer,
|
||||
layers.Dense(units=1)
|
||||
])
|
||||
|
||||
print(horsepower_model.summary())
|
||||
|
||||
# Run the model without training
|
||||
print(horsepower_model.predict(horsepower[:10]))
|
||||
|
||||
# Configure the training process
|
||||
horsepower_model.compile(
|
||||
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||||
loss='mean_absolute_error'
|
||||
)
|
||||
|
||||
# Train for 100 epochs
|
||||
history = horsepower_model.fit(
|
||||
train_features['Horsepower'],
|
||||
train_labels,
|
||||
epochs=100,
|
||||
# Suppress logging.
|
||||
verbose=0,
|
||||
# Calculate validation results on 20% of the training data.
|
||||
validation_split=0.2
|
||||
)
|
||||
|
||||
# Show training progress
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
print(hist.tail())
|
||||
|
||||
# Show loss plot
|
||||
plot_loss(history)
|
||||
|
||||
# Collect results on test set
|
||||
test_results = {}
|
||||
|
||||
test_results['horsepower_model'] = horsepower_model.evaluate(
|
||||
test_features['Horsepower'],
|
||||
test_labels, verbose=0
|
||||
)
|
||||
|
||||
# Plot the regression line
|
||||
x = tf.linspace(0.0, 250, 251)
|
||||
y = horsepower_model.predict(x)
|
||||
plot_horsepower(x, y, train_features, train_labels)
|
||||
|
||||
def regression_multiple_inputs():
|
||||
raw_dataset = load_data()
|
||||
dataset = raw_dataset.copy()
|
||||
|
||||
#################################
|
||||
### Prepare the training data ###
|
||||
#################################
|
||||
|
||||
# Print the end of the dataset
|
||||
print(dataset.tail())
|
||||
|
||||
# Check for any undefined values
|
||||
print(dataset.isna().sum())
|
||||
|
||||
# Drops unknown values
|
||||
dataset = dataset.dropna()
|
||||
|
||||
# Replaces the alphanumerical values with numerical ones. Can be done via keras model, but is overkill for 3 values.
|
||||
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
|
||||
dataset = pd.get_dummies(dataset, columns=['Origin'], prefix='', prefix_sep='')
|
||||
|
||||
# Split into training and test data
|
||||
train_dataset = dataset.sample(frac=0.8, random_state=0)
|
||||
test_dataset = dataset.drop(train_dataset.index)
|
||||
|
||||
# Print pair plots of the data to see if there are any probable correlations
|
||||
sns.pairplot(train_dataset[['MPG', 'Cylinders', 'Displacement', 'Weight']], diag_kind='kde')
|
||||
plt.show()
|
||||
|
||||
# Print statistics about the features
|
||||
print(train_dataset.describe().transpose())
|
||||
|
||||
# Separate the label from the features
|
||||
train_features = train_dataset.copy()
|
||||
test_features = test_dataset.copy()
|
||||
|
||||
train_labels = train_features.pop('MPG')
|
||||
test_labels = test_features.pop('MPG')
|
||||
|
||||
###########################
|
||||
### Normalize the model ###
|
||||
###########################
|
||||
|
||||
# Create the normalization layer
|
||||
normalizer = tf.keras.layers.Normalization(axis=-1)
|
||||
|
||||
# Fit the preprocessing layer to the data
|
||||
normalizer.adapt(np.array(train_features))
|
||||
|
||||
# See what effect the normalization has
|
||||
first = np.array(train_features[:1])
|
||||
|
||||
with np.printoptions(precision=2, suppress=True):
|
||||
print('First example:', first)
|
||||
print()
|
||||
print('Normalized:', normalizer(first).numpy())
|
||||
|
||||
#######################################
|
||||
### Start with the regression stuff ###
|
||||
#######################################
|
||||
|
||||
# Create Horsepower NP array and normalize it
|
||||
horsepower = np.array(train_features['Horsepower'])
|
||||
|
||||
horsepower_normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||||
horsepower_normalizer.adapt(horsepower)
|
||||
|
||||
# Build the Keras Sequential Model
|
||||
# Apply a linear transformation to produce 1 output using a linear layer (layers.Dense)
|
||||
linear_model = tf.keras.Sequential([
|
||||
normalizer,
|
||||
layers.Dense(units=1)
|
||||
])
|
||||
|
||||
# Run the model without training
|
||||
print(linear_model.predict(train_features[:10]))
|
||||
|
||||
# Configure the training process
|
||||
linear_model.compile(
|
||||
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||||
loss='mean_absolute_error'
|
||||
)
|
||||
|
||||
# Train for 100 epochs
|
||||
history = linear_model.fit(
|
||||
train_features,
|
||||
train_labels,
|
||||
epochs=100,
|
||||
# Suppress logging.
|
||||
verbose=0,
|
||||
# Calculate validation results on 20% of the training data.
|
||||
validation_split=0.2
|
||||
)
|
||||
|
||||
# Show training progress
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
print(hist.tail())
|
||||
|
||||
# Show loss plot
|
||||
plot_loss(history)
|
||||
|
||||
# Collect results on test set
|
||||
test_results = {}
|
||||
|
||||
test_results['linear_model'] = linear_model.evaluate(
|
||||
test_features, test_labels, verbose=0
|
||||
)
|
||||
|
||||
# Plot the regression line
|
||||
# Apparently, this doesnt work for multi inputs because i guess 3D plotting is kinda hart
|
||||
#x = tf.linspace(0.0, 250, 251)
|
||||
#y = linear_model.predict(x)
|
||||
#plot_horsepower(x, y, train_features, train_labels)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
regression_single_input()
|
||||
regression_multiple_inputs()
|
6
requirements.txt
Normal file
6
requirements.txt
Normal file
|
@ -0,0 +1,6 @@
|
|||
scikit-learn
|
||||
tensorflow
|
||||
seaborn
|
||||
matplotlib
|
||||
numpy
|
||||
pandas
|
Loading…
Reference in New Issue
Block a user